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Content and scope of the course

= Motivation:
» Why using microfluidics for cell studies?

» Unique features offered by microfluidics
for cell studies

* |Important parameters to consider when \\\ 0
designing microsystems for cell studies / o
experimentation

Environment / format of the culture
= Material

= Pumping

» Surface chemistry / topography

= Gradients




. Motivation
Why using microfluidics for cell studies?



Why using microfluidics for cell studies?

Single cell experimentation
» Size of the system comparable to the size of cells (10-100 um)
= Cells trapped thanks to a microstructure: cells easy to “follow”
= Tracking of events at the single cell level
= Suitability to work with rare cells

= New experimental opportunities!!




Why using microfluidics for cell studies?

= Micrometer size = Highly controlled microenvironment

= Laminar character of the flow \\// Courtesy B. Harink

= Predictable and controllable flow
= Possibility to create gradients

Courtesy Z . Hao
= High surface-to-volume ratio

= Efficient surface-based exchange phenomema (e.g., heat & gas exchange)
= Controllable and tuneable physical microenvironment

= Confinement
= Close to in vivo conditions

= Advantageous format for culturing cells
and creating in vitro cellular models

Le Gac et al., Tr. Biotech., 2008 ; Harink et al., Lab Chip, 2013; Picollet D’hahan et al., Tr Biotech., 2021.



Microfluidics and cell studies
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Applications of microfluidics for cell studies

Single cell studies
» Single cell analysis
Retrieval of specific molecules (DNA, RNA, targeted proteins) inside a cell
and on-line analysis (on-chip or off-chip)
Single cell imaging or characterization (electrical, mechanical, etc.)
» Single cell engineering
Cell electroporation, intracellular injection, cell fusion
= Single cell treatment
Exposure to chemical/electrical stimuli (possibly followed by cell analysis)

Monolayer (2D) studies
= Cell culture
= Cell electroporation
» Drug screening

Tissue studies (3D)
» Tissue engineering / Cell culture
» Fundamental studies on tissue formation (angiogenesis, differentiation)
» Drug screening, metabolism studies
= QOrgan-on-chip platforms



Il. Cell culture and microfluidics:
Important parameters to consider



Important parameters

Cell microenvironment
= Physical and chemical parameters (T°C, gas %, ...)
» Mechanical cues — passive (hydrogel properties) vs. active
(applied forces)

Materials
= Cell-friendly (biocompatible), cheap, easy fabrication

Liquid flow / Perfusion
* No hyperphysiological shear on cells (death), easy operation

Surface properties
= Control cell adhesion (adherent vs. suspension cells)
= Control cell behavior (topography, stiffness, chemistry)

Gradients
= Soluble factors
» Surface (functionalization; mechanical properties)



The in vivo cellular microenvironment
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The in vivo cellular environment

= Polarized cells

= Cells located at the edge of a lumen in the body, in physiological barriers
(epithelial cells)

= Forming a tight monolayer and establishing tight-junctions

Non-polarized cells Polarized cells

@ @ @& @

= Culture on specific substrates, with flow, to promote cell polarization
= 3D culture (in an ECM-rich environment)

= Cancer cells

= When cultured in 2D, loss of their cancer character......
= Not only influence of gene mutations, but also influence of external
factors (ECM, cell-cell contact).

= Need for 3D culture platforms and in vivo-like environment

ECM = extra cellular matrix



The in vivo cellular environment

= Stem cell

» Capacity to differentiate into specialized cell types
= Self-renewal or ability to divide while remaining undifferentiated
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= Stem cell niche

Kobel et al., 2010;
Lutolf et al. 2009

External factors < fate of the cells

1. Quiescent cell

Asymmetric division = stem cell + differentiated cell
Symmetric division = 2 differentiated cells
Symmetric division = 2 stem cells

B wpn

Cell-cell interactions Metabolic cues

- Cadherins - lons, hormones, ...
- Cell adhesion molecules
(CAM) Biophysical aspects

- Notch ligands - Substrate elasticity

- Physical forces

ECM adhesion - Spatial arrangement, ...

- Fibronectin

- Laminin Soluble signals
- Collagens - Growth factors
- GAGs - Cytokines

- Vibronectin, ... - Chemokines



Conventional cell culture

Static culture, punctual medium exchange

Culture medium: excess of nutrients, promoting cell proliferation
Physicochemical parameters (incubator level): temperature, % CO,, pH
Limited flexibility and throughput on the experimentation/ culture

Not suitable to recapitulate the cell microenvironment

= Fully artificial culture conditions




Microfluidic cell culture

Highly confined environment: “in vivo like”

Dynamic culture: continuous medium perfusion, pulsatile delivery, rapid
medium exchange, etc...

Emulation of the in vivo physiological microenvironment (incl. spatio-
temporal variations)

Generation of gradients; biochemical and mechanical stimulation
|deal format for higher throughput and parallelization of the experiments
= possible screening of simplified culture conditions

= Microfluidics: attractive format in cell biology




Choice of the material(s) for the device

Requirements / wish-list:
» Biocompatible

= (Gas-permeable
= Easy processing (no need for a dedicated clean-room environment)

= Cheap (single-use device)
= Optical transparency and low autofluorescence level

Conventional dishware:
Polypropylene or polystyrene; possible plasma treatment to make them hydrophilic



Materials - PDMS

PDMS (polydimethylsiloxane) >

= Predominant material for microfluidic cell studies

= Cheap, biocompatible, gas-permeable S\ /\

» Easy and fast fabrication within a few days

o Expose M anacr
= No need for a cleanroom environment i A9
= Processing using soft-lithography: 2D and 3D P v

structures down to low micrometer-size gl bl
= |deal for the realization of valves
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Materials - PDMS

However...
= Hydrophobic material,
» Limited aspect ratio in structures, flexibility of the material,
= Sensitivity to the temperature and to organic solvents,
» Porous material = evaporation of solvents = concentration changes
= Gas-permeable: good or bad news?
= Adsorption and absorption of (small) and hydrophobic molecules....
= Material release in solution: contamination; interactions with cell membranes
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Materials - PS

Polystyrene (PS)
= Conventional material for Petri dishes
= Biocompatible, optically transparent, rigid, inert,
» Possible surface functionalization

Techniques for the system fabrication:
= Hot embossing
= Molding of liquid PS




Materials - 3D printed materials

Limitations
= Resolution of the 3D printed structures, surface roughness
= Materials: proprietary composition & biocompatibility
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Soft materials — Hydrogel & Gelatin

Photoresist

Soft materials Wafer PDMS

Same texture as tissues Gelatin/mTG
Possibility to alter their mechanical properties
Highly porous substrates

Easy molding against, e.g, PDMS structures

Gelatin crosslinked with microbial transglutaminase f
o [ Nl

Gelatin/mTG

PDMS

Master

» ECM-like substrate

» Cells forming 3D structures like in vivo, and
not monolayers as observed on culture
dishes (hard materials)

» |nvasion of the cells in the gelatin matrix

24 hours
Paguirigan et al., 2006



Pumping liquids

Ideally: continuous perfusion of medium in the microsystem

Issues:

No shear stress on cells (high flow-rate = local detachment and death of cells)
Homogeneous distribution of nutrients and gas = no stagnation point

Diffusion-based transport of nutrients (in vivo conditions): convective
transport at proper flow-rate to maintain the tissue mass.

No air bubble, T°C

= Mild pumping protocol
= Insertion of a membrane between the flow and the cells
= Purely diffusion-based delivery of fresh medium



Pumping liquids - Peristaltic pumps

PDMS valves: peristaltic integrated pump
= single-stroke PDMS pump

control channel pumping element  fluidic channel

Fluid out

\ Air in/out
oy
Vertical gap
30 um

/;uid in

Unger et al.,
Lai et al., 2011

Peristaltic integrated pump based on a pin Braille display

» Deformation of a PDMS membrane (140—um thick) using pins
. ! - ]

= Very low flow-rate; need for external equipment for valve acuation
Gu et al., 2004




Pumping liquids - Hydrostatic pumps

Hydrostatic pumping: using a height difference in liquid for in-incubator
pumping, without any capillary connection
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Pumping liquids — Rockingl/tilting platform

Hydrostatic yet “dynamic” pump
» Use of a tilting or rocking platform

= Continuous flow across the device

between two reservoirs; continuous
shear on cells

Kim et al., J. Biotech, 2015 = |nstrumentation usable in an incubator
= QOperation at a specific “switching”
Limitations frequency and at a specific angle

= One flow direction: endothelial o o
- . . Flow direction ‘0°4 Flow direction 0°
cells sensitive to the flow direction —

v

Phase contrast

DAPI VE-Cadherin

Lab Chip, 2018, 18, 2563



Pumping liquids - Passive pumping

Passive pumping: creation of a flow using surface tension
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Pumping liquids - Diffusion-based delivery

Diffusion-based delivery of medium
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Surface treatment

Suspension cells

= Cell repellent coating (PEG, BSA) to prevent non
specific cell adhesion on the surface

Adherent cells
= Coating <~ controlled cell adhesion

» Specific coating for their adhesion: ECM proteins such
as fibronectin, PEI, specific antibodies, polylysine...

= Combination with a cell-repellent coating (PEG, BSA)

= Possible patterned functionalization for single cell 1on [§
isolation (microcontact printing, spotting)

PEG: polyethylene glycol; BSA bovine serum albumine; PEI: polyethylene imine



Surface treatment — Cell differentiation/fate

Growth vs. apoptosis of cells as a hMSCs differentiation into

function of their surface area adipogenic & osteogenic lineages.
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Surface treatment — Spheroid production

Spontaneous formation of spheroids in microwells and microchannels

» Culture on a cell-repellent substrate = cell self-assembly into microtissues

")\ PDMS channel

= Cell culture on a BSA-coated
PC membrane

polycarbonate
membrane

= Spontaneous aggregation into £ . ADTERY
SIS chanre] microtissues

P —
within microchannel

Torisawa et al., 2007 PC: polycarbonate




(Bio)Chemical gradients

Cell microenvironment: not only physical/(bio)chemical cues but also gradients

Gradients
= Regulation of cell behavior: activation of signaling pathways or cell differentiation
» Guide for cell migration (chemotaxis)
» Role in many biological processes (angiogenesis, wound healing, tumorigenesis/
metastasis, development)

Skin surface Red blood cell
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(NMPs), macrophages and fibroblasts
on the site of injury for wound healing
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d Late inflammation (48 h)

Collagen l Fibroblast

- Beanes et al., 2003

e Proliferation (72 h) —_— f Remodelling (weeks to months)



(Bio)Chemical gradients

Microfluidics

Straightfoward generation of gradients < predictable and controllable flows:
= soluble factors (biochemical cues)

» surface forces (substrate stiffness)

= chemical patterns (molecular functionalization)

"Mixing” upon i . .
diffusion in a flow  Diffusion-based gradient from a reservoir
configuration into a sink via a hydrodynamic barrier

Serial mixing of
two solutions



(Bio)Chemical gradients

Chemotaxis study: neutrophil migration towards a source of chemokines
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(Bio)Chemical gradients
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(Bio)Chemical gradients
Angiogenesis
5

jngiogenesis on a chig™

=  Co-culture of endothelial cells and fibroblasts

= Angiogenesis: creation of a 3D perfusable
vascular network through the migration of
endothelial cells into a hydrogel matrix

= Angionenesis proces supported by growth
factors (VEGF) secreted by stromal cells (here,
lung fibroblasts).

» Gradients of growth factors that are secreted by
fibroblasts created across a tissue/hydrogel
compartment.

Kim et al., Lab chip, 2013; DOI: 10.1039/c3Ic41320a



Conclusion — Take home message

Microfluidics
» New tool for exciting and unprecedented research in cell biology
» Possibility to recapitulate the natural microenvironnment of cells

Care to be taken to design microsystems depending on the application
» Proper choice of the material
= Need for proper surface chemistry?
= Methodology for pumping fluids



